

Oman Convention and Exhibition Centre

The 17th International Congress of The Middle East Africa Council of Ophthalmology

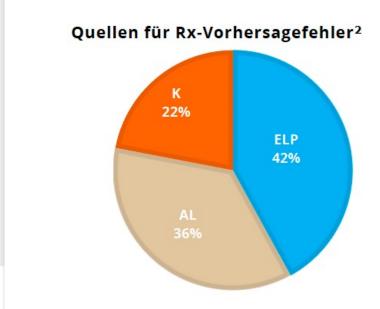
JOINTLY WITH

19th Muscat International Ophthalmology Conference (MIOC) 2023

Premium IOL Implantation After LVC

Omid Kermani, MD ARTEMIS Augenklinik Köln GERMANY

Patients after LVC are the most demanding because they have very high expectations with regard to the refractive result

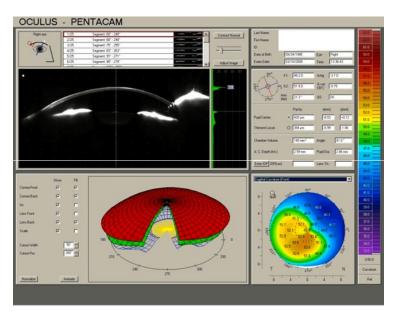


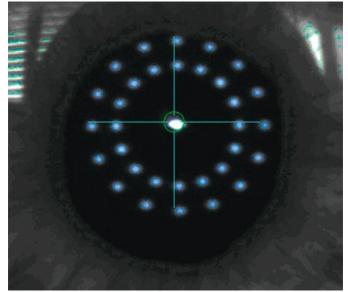
Challenges

- Usually also expect presbyopia correction
- Come earlier than "normal" cataract patients
- Previous findings are often incomplete
- Common biometric formulas are not adapted to LVC eyes
- Higher order aberrations (HOA) are more pronounced
- Chronic post-LVC sicca syndrome is not uncommon
- The option to perform a touch-up on the cornea is limited

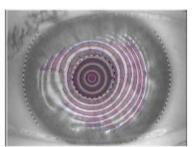
Effect Of Biometrical Parameters If Incorrect

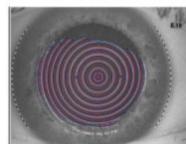
Abweichung von den Mittelwerten verschiedener Variablen und entsprechende Brechungsfehler $^{\scriptscriptstyle 2}$

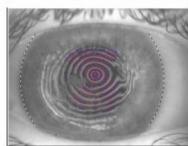

Variable	Error	Rx error
Corneal radius	1.0 mm	5.7 D
Axial length	1.0 mm	2.7 D
Postoperative ACD	1.0 mm	1.5 D
IOL power	1.0 D	0.67 D

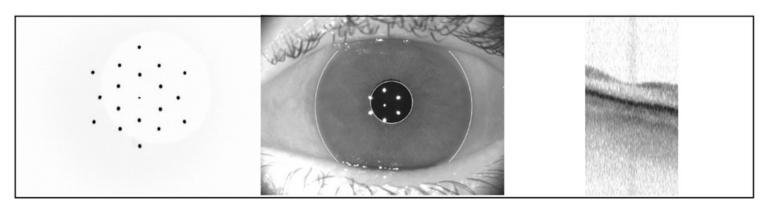

Rx error = refraction error; ACD = anterior chamber depth; IOL = intraocular lens.

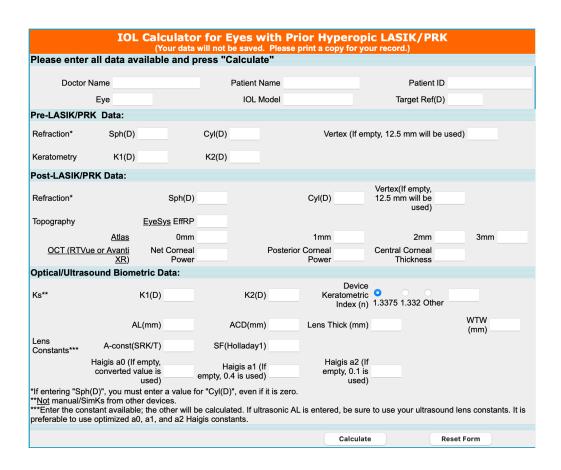
2. Olsen T. Acta Ophthalmol. Scand. 2007;85:472-485



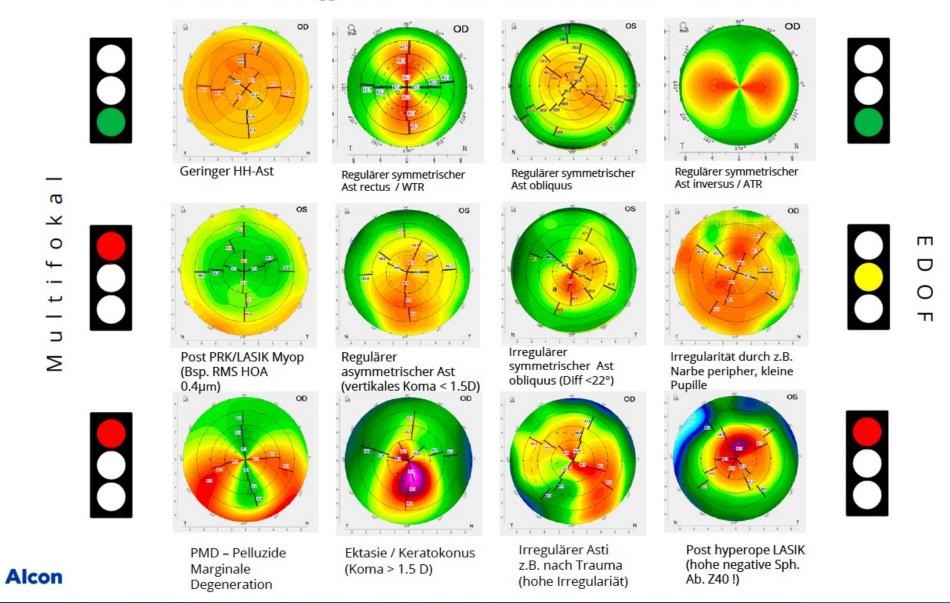

Keratometry Measuring Principles (selection)





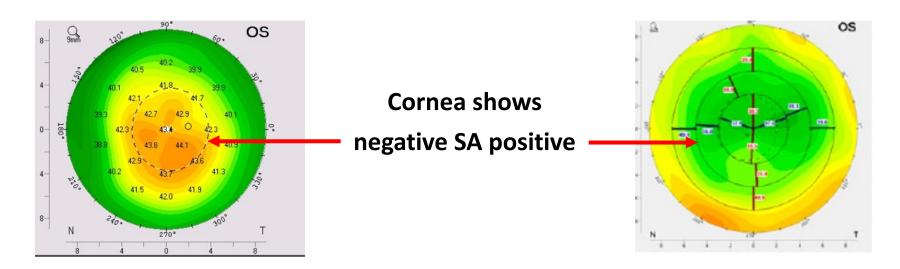


Alcon


ASCRS Post-LVC IOL Calculator

	(Your o	lata will not be saved. Please p	rior Myopic LASIK/PRK print a copy for your record.)	
Please enter all data	available and pre	ss "Calculate"		
Doctor Name		Patient Name		nt ID
Eye		IOL Model	Target Ref (D)	
Pre-LASIK/PRK Data:				
Refraction*	Sph(D)	Cyl(D)*	Vertex (If empty, 12.5 mm is used)	
Keratometry	K1(D)	K2(D)		
Post-LASIK/PRK Data:				
Refraction*§	Sph(D)	Cyl(D)*	Vertex(If empty, 12. mm will be used	
Topography	EyeSys EffRP	Tomey ACCP Nidek [#] ACP/APP	Galile TCP	
Atlas Zone value	Atlas 9000 4mm zone		<u>Pentacar</u> TNP_Apex_4.0 mr Zon	n
Atlas Ring Values	0mm	1mm	2mr	n 3mm
OCT (RTVue or Avanti XR)	let Corneal Power	Posterior Corneal Power	Central Cornea Thicknes	
Optical/Ultrasound Bio	metric Data:			
Ks	K1(D)	K2(D)	Device Keratometric Index (n) 1.3375 1.332 O	
	AL(mm)	ACD(mm)	Lens Thick (mm)	WTW (mm)
Lens Constants**	const(SRK/T)	SF(Holladay1)		
Haigis converted v	a0 (If empty, ralue is used)	Haigis a1 (If empty, 0.4 is used)	Haigis a2 (If empty, 0.1 is used)	
	tion prior to developme Scan III APP 3-mm mar ilable; others will be ca	ent of á cataract. nual value (personal communicati lculated from those entered. If ultr	on Stephen D. Klyce, PhD). asonic AL is entered, be sure to use you	ur ultrasound lens constants.
			Calculate	Reset Form

Übersicht Axial/Saggitalkarten für den Einsatz von Multifokallinsen und EDOF

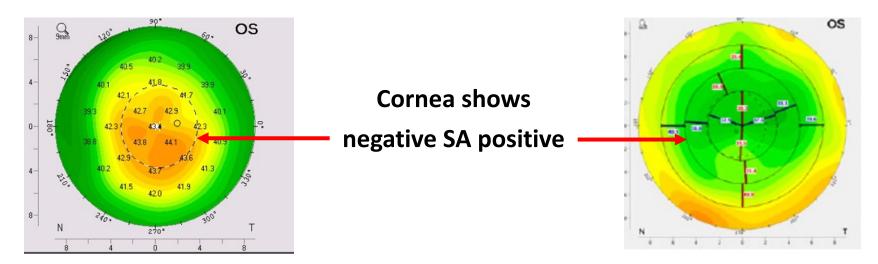


IOL Selection After LVC

Previos Hyperopic LVC

Previous Myopic LVC

Conventional IOL with positive SA


Aspheric IOL with negative SA

Presbyopia Correcting IOL Selection After LVC

Previos Hyperopic LVC

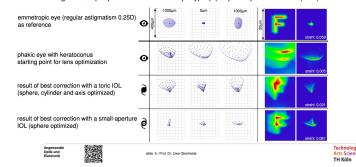
Previous Myopic LVC

IOL with zero SA = Blended Monovision Uses the corneal SA for depth of focus Aspheric Multifocal/EDOF IOL with negative SA HOA ≤ 0,4µm and stable tearfilm

SmallAperture-IOL In Eyes With Highly Aberrated Corneas

Raytracing-Simulationen von small-aperture und torischen IOLs in Keratokonusaugen

U. Oberheide¹, A. Grafov¹, H. Weigand¹, G. Gerten², O. Kermani²

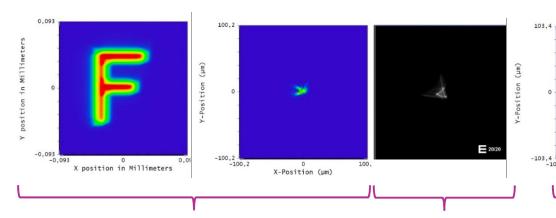

¹ Institut für Angewandte Optik und Elektronik, TH Köln

² Augenklinik am Neumarkt, Köln

Technology Arts Sciences TH Köln

Results of simulations I - focus and point spread function

Simulation of photopic conditions (2.5mm pupil, 550nm wavelength): through focus spot pattern / simulated optotype (F) / point spread function (PSF)



small-aperture IOL

Effect of limitating optical system to central corneal region

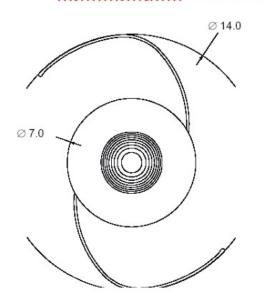
- extending the depth of field (intended use for presbyopia correction)
- Reducing the effect of peripheral corneal aberrations (e.g. from asymmetric cornea)

simulation of optimized toric IOL (optotype and PSF)

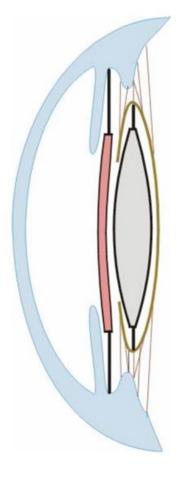
measured PSF after toric IOL implantation

PSF simulation of optimized sma aperture IOL

X-Position (µm)




Supplemental Multifocal Sulcus IOL


Primary target: Secondary MF IOL Implantation in Pseudophakic Monofocality

PCL + Add-On Sulcus IOL

- Haptic diameter >13.0mm
- Optic diameter ≥ 6.0mm
- Angulation of haptics ≥ 10⁰
- Hydrophylic material

Dual intraocular lens implantation: Monofocal lens in the bag and additional diffractive multifocal lens in the sulcus

Georg Gerten, MD, Omid Kermani, MD, Karl Schmiedt, MD, Elham Farvili, MD, Andreas Foerster, MD, Uwe Oberheide, PhD

PURPOSE: To evaluate a new diffractive multifocal intraocular lens (IOL) as an additional (add-on) IOL for sulcus-based implantation.

SETTING: Augenklinik am Neumarkt, Köln, Germany.

METHODS: In this prospective study, cataract patients had phacoemulsification and IOL implantation. After phacoemulsification, an aspheric silicone monofocal IOL (MS 612 ASP-Y) with a power range of +4.00 to +27.00 diopters [D]) was implanted in the capsular bag. This was followed by sulcus placement of an add-on multifocal IOL (MS 714 PB) with a +3.50 D diffractive element for near but zero refractive power for distance.

RESULTS: The study included 56 eyes of 30 patients. Three months postoperatively, the mean monocular uncorrected distance visual acuity was $0.10 \log MAR \pm 0.11 (SD)$ (median $1.00 \det$ decimal; 20/20 Snellen), with a remaining mean postoperative spherical equivalent of 0.01 ± 0.51 D. The mean uncorrected intermediate visual acuity was $0.20 \pm 0.15 \log MAR$ (median $0.63 \det$ decimal; 20/30 Snellen) with a luminance of $500 \log A$ the mean uncorrected near visual acuity (Early Treatment Diabetic Retinopathy chart) was $0.16 \pm 0.13 \log MAR$ (median $0.80 \det$ decimal; Jaeger 2). No major complications (eg. iris chafing, iris capture, lens epithelial cell ingrowth, glaucoma) were associated with the add-on 10L in the sulcus.

CONCLUSIONS: Combined implantation of an add-on diffractive sulcus IOL and a monofocal capsular bag IOL was safe and effective in improving far and near visual acuity in cataract surgery. Preliminary visual acuity results were similar to those in eyes with a single 1-piece diffractive multiflocal IOL.

J Cataract Refract Surg 2009; 35:2136-2143 © 2009 ASCRS and ESCRS

METHODS: In this prospective study, cataract patients had phacoemulsification and IOL implantation. After phacoemulsification, an aspheric silicone monofocal IOL (MS 612 ASP-Y) with a power range of +4.00 to +27.00 diopters [D]) was implanted in the capsular bag. This was followed by sulcus placement of an add-on multifocal IOL (MS 714 PB) with a +3.50 D diffractive element for near but zero refractive power for distance.

RESULTS: The study included 56 eyes of 30 patients. Three months postoperatively, the mean

first generation of bifocal IOLs relied on the refractive principle, their performance was very dependent on pupil size and, compared with monofocal IOLs, they had potential adverse optical effects, such as loss of contrast sensitivity and compromised visual acuity IOL and its replacement by a monofocal IOL is a possible, although not desirable, solution. The concept of an additional functional diffractive optic is an alternative for uneventful reversibility of this complex refractive surgical procedure.

2136 © 2009 ASCRS and ESCRS Published by Elsevier Inc. 0886-3350/09/\$—see front matter doi:10.1016/j.jcrs.2009.07.014

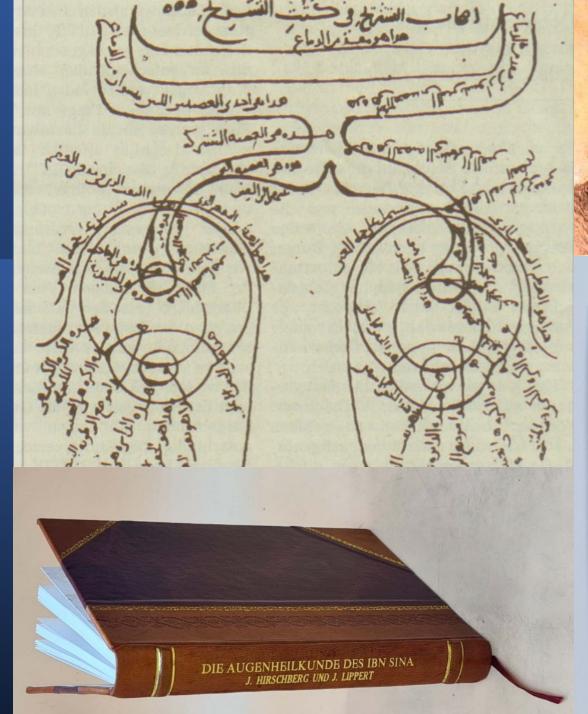
Reversible MF Solution Or Alternative To Laser Touch-Up

Presently not available in the USA

- AddOn[®]
- 1stQ Germany

- Reverso*
- Cristalens France

- Sulcoflex®
- Rayner UK



Thank You

"There are no incurable diseases - only a lack of will and knowledge."

Ibn Sina (Avicenna) Persian physician 980 -1037 AD.

www.kermani-vision.de

